Skip to Content.
Sympa Menu

rare-dev - Re: [rare-dev] ecdh vs dh

Subject: Rare project developers

List archive

Re: [rare-dev] ecdh vs dh


Chronological Thread 
  • From: Cristina Klippel Dominicini <>
  • To: "" <>
  • Subject: Re: [rare-dev] ecdh vs dh
  • Date: Mon, 29 Aug 2022 14:01:26 +0000
  • Accept-language: pt-BR, en-US

Hi Csaba!

Sorry for the delay. For some reason, I am not receiving all the threads from
the rare list, and my mail server also blocked some messages. I will check
the archives.

Interesting question! I am honored by your mention as a skilled
mathematician, but I am more a computer engineering trying to understand and
apply the math concepts to computing problems :-D But I have some very
skilled mathematician friends that help me when I have some doubts. I will
check with them if they have any insights about your question and get back to
you soon :-)

Best regards,
Cristina

________________________________________
De: <> em
nome de mc36 <>
Enviado: sexta-feira, 26 de agosto de 2022 06:45
Para: Cristina Klippel Dominicini
Cc:
Assunto: [rare-dev] ecdh vs dh

hi,

can i ask you to help me solve a long lived question of me please:
(i ask you because you're the only well skilled mathematician i know)
(if it's outside of your interest, please forward it someone)

which is harder to find out both a and b:

( (g^a)^b) % p == ( (g^b)^a) % p
where g is 2 or 5, p is a 8192 bit prime, both well known, a and b are both
secrets
here we are talking about positive integers

or

a*b == b*a
here the computation is performed over 448bit elliptic curves


my reasoning is that reversing the multiplication should be easier than
solving the discrete logarithm problem

i see that it is an apples to oranges kind of question so a weak conjecture
is much more than enough

thanks,
cs


________________________________

Esta mensagem (incluindo anexos) contém informação confidencial destinada a
um usuário específico e seu conteúdo é protegido por lei. Se você não é o
destinatário correto deve apagar esta mensagem.

O emitente desta mensagem é responsável por seu conteúdo e endereçamento.
Cabe ao destinatário cuidar quanto ao tratamento adequado. A divulgação,
reprodução e/ou distribuição sem a devida autorização ou qualquer outra ação
sem conformidade com as normas internas do Ifes são proibidas e passíveis de
sanção disciplinar, cível e criminal.




Archive powered by MHonArc 2.6.19.

Top of Page